

Super fast
end-to-end tests
Lars Thorup
ZeaLake Software Consulting

August, 2020

Lars Thorup

● Software developer/architect
● JavaScript, Python, SQL, C#
● Continuous Delivery

● Coach
● Agile engineering practices

and tools

● @larsthorup

Agenda
● What's so bad about end-to-end tests?

● Why are unit tests not sufficient?

● Getting the best of both worlds

● Demo!

What's so bad about end-to-end tests?

* Thanks to Randall Munroe: xkcd.com/303/

What's so bad about end-to-end tests?
● Not fast

● just a few / minute

● Not precise
● each test covers a lot of code

● Not simple
● multiple processes, persistent state

● Not robust
● fail sporadically

Unit tests have many nice properties
● Fast

● Precise

● Simple

● Robust

Why are unit tests not sufficient?
● To test code in isolation...

● ...dependencies are mocked

● So what happens when a
dependency changes its
interface?

● The application may break,
while all unit tests pass!

● Because...

● ...mocks lie to you!

The problem with unit tests: mocks lie to you!
● All is well for now:

The problem with unit tests: mocks lie to you!
● When we change the interface - tests still pass

The problem with unit tests: mocks lie to you!
● How can mocks lie to us?

● ...because we hand-write them

● ...we copy assumptions that can change

● What if we could automatically generate correct mocks?

Getting the best of both worlds

Auto-mocking

capture

DB
API

UI

capture
tests

tests

mock
API

test data

How fast can auto-mocking be?
● 1553 tests in 4 seconds

Okay, so how does this work?

Tools
● Polly.js

● https://netflix.github.io/pollyjs/

● Hoverfly (Go, Python, Java)
● https://docs.hoverfly.io/

● Others
● VCR.py - https://vcrpy.readthedocs.io/
● RubyVCR - https://relishapp.com/vcr/vcr/

Project experience
● Triggerz, 2016-2019

● Node.js, React, Mocha
● 1553 end-to-end unit tests, 4 seconds, 90% coverage

● Nets, 2019
● Java, Angular, JUnit, Hoverfly

● BASE life science, 2020
● Python, React, Jest, Polly.js
● 98 end-to-end scenario tests, 45 seconds, 94% coverage

Sample code, Hoverfly
● Capture

● Simulate

Hoverfly hoverfly = new Hoverfly(localConfigs(), HoverflyMode.CAPTURE);
hoverfly.start();

// ... do HTTP requests

hoverfly.exportSimulation("/some/path");
hoverfly.close();

Hoverfly hoverfly = new Hoverfly(localConfigs(), HoverflyMode.SIMULATE);
hoverfly.start();
hoverfly.simulate(SimulationSource.file("/some/path")));

// ... do HTTP requests

hoverfly.close();

Sample code, Polly.js
● Setup

● Record

● Replay

const baseOptions = {
 adapters: ['node-http'],
 persister: 'fs',
 persisterOptions: {fs: {recordingsDir}},
}

const options: PollyConfig = {
 ...baseOptions,
 mode: MODES.REPLAY,
 recordIfMissing: false
}
const polly = new Polly('MetricView', options)

// ... do HTTP requests

polly.stop()

const options: PollyConfig = {
 ...baseOptions,
 mode: MODES.RECORD,
}
const polly = new Polly('MetricView', options)

// ... do HTTP requests

polly.stop()

Sample capture

What about?
● Standard test data?

● yes, you need that!

● Web sockets?
● have not tried with this technique...

● External services?
● very well suited for this!

● Stateful exchanges?
● avoid 1) fetch A, 2) update A, 3) fetch A again
● instead 1a) fetch A, 1b) update A, 2a) update B, 2b) fetch B

● Auto-capture instead of writing capture tests?
● might work?

Questions!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

