

September, 2021

Sub-second integration tests for your
React Native app and Bluetooth device

Lars Thorup
fullstackagile.eu

Agenda
● A story about test automation at

SOUNDBOKS

● How can we test an app that controls
a Bluetooth device?

● Demo!

● End-to-end tests are slow and fragile
● Unit tests with manual mocks lie to us
● Mock recording gives us fast, robust

integration testing

Test automation at SOUNDBOKS
● Bluetooth Performance Speaker

● Equalizer
● Lock
● Join
● LOUD!

● End-to-end testing
● Appium
● Jenkins on a Macbook Pro
● Samsung, Huawei, iPhone

SOUNDBOKS end-to-end testing
● 15 scenarios, 1-5 minutes per

scenario

● Total feedback time: 2:30 hours
● 38 minutes on Samsung
● 55 minutes on iPhone

● Improvement on manual testing

● False negatives >10% of the time

When to use end-to-end testing vs unit testing?
● End-to-end testing

● Faster and cheaper than manual testing!
● Covers the entire system: device, phone,

server
● Exposed to real-world timing & wireless

noise
● Relentlessly uncovers hard-to-reproduce

issues

● Unit testing
● No physical setup
● Much faster feedback -

minutes instead of hours
● Much more robust -

~100% trustworthy feedback

➔ Use for most testing!➔ Have a few of these

Unit testing a React Native / BLE app
● React Native

● react-native-ble-plx

● Jest

Manual mocks
● Simulated behavior of BLE device

● Hard coded BLE messages and traffic patterns

But... manual mocks lie to us!
● To test app code in isolation...

...we manually mock device traffic

● When the protocol changes but the
app code is not changed...

...the app will break

● But unit tests will still pass!?!

● So...

...manual mocks lie to us!

Can we get the best of both worlds?
● Use mock recording when unit testing

● Provides true integration testing

● Gives speed and robustness of unit testing

● Not just for HTTP - also for Bluetooth BLE traffic

Mock recording for true integration testing

Record traffic
● Run occasionally

● E.g. weekly
● When making protocol changes

● Against real device

● Capture real traffic

● Verify expectations

Test the app
● Use recording as BLE mock

● Tests are fast and robust
● 200ms per test
● 50 BLE messages

● You can run tests as often as you
want

● True integration testing

Sample recording

Set up react-native-ble-plx mock with Jest
● __mocks__/react-native-ble-plx.js

Write app tests using Jest

load recording to simulate BLE traffic

render app

click buttons

Recorder app
● A lightweight React Native app

● Dedicated to recording traffic for the
app tests

● Documents what traffic is necessary
for given scenarios

● Evolves over time with new or
updated scenarios

● Has to be created in addition to the
app tests
● Jest does not run on the phone
● react-native-ble-plx does not run on a

laptop

Write the recorder app

add label

generate traffic

start recorder

save recording

Architecture: overview

device

firmware

phone

computer

app

ble-recorder
ble-plx

BLE
app test

ble-mock

recorder test

recording

Architecture: running the app

device

firmware

phone

app

ble-plx
BLE

Architecture: recording traffic

device

firmware

phone

computer

ble-recorder
ble-plx

BLE

recorder test

recording

Architecture: testing the app

computer

app app test

ble-mock

recording

Architecture: overview

device

firmware

phone

computer

app

ble-recorder
ble-plx

BLE
app test

ble-mock

recorder test

recording

Time for questions!

How to handle different developer devices?
● Run recordings locally as well as on

build server

● Developers have different local
devices with different ids

● Shared recordings should use
canonical device id

● So: you can specify this mapping in
the recorder app

How to handle varying values?
● Devices have different

values of characteristics

● E.g. RSSI, battery level,
volume

● Recording should use
canonical values

● So: you can specify the
recorded value and verify
the actual value in the
recorder app

Can we still do manual mocking?
● Have at least one integration test per BLE “message”

● Additional tests can be unit tests with manual mocks
● parameterized tests, boundary testing, combinatorial testing

● So: you can manually mock BLE traffic in your app tests

How to debug recordings?
● BLE traffic

● refers to services and
characteristics by UUID

● values are base64 encoded
● not very readable!

● So: the recording file
includes debugging
information for your
convenience

Read more!
● Blog post

● fullstackagile.eu/2021/06/24/
bluetooth-ble-mock-recorder

● Repository
● github.com/larsthorup/react-

native-ble-plx-mock-recorder

● Package
● npmjs.com/package/react-

native-ble-plx-mock-recorder

● Contributions welcome!
Lars Thorup
fullstackagile.eu

twitter.com/larsthorup

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

