B B

Sub-second integration tests for your
React Native app and Bluetooth device

September, 2021

Lars Thorup
fullstackagile.eu

A s
Agenda

e A story about test automation at

SOUNDBOKS
* End-to-end tests are slow and fragile
e How can we test an app that controls * Unit tests with manual mocks lie to us
a Bluetooth device? * Mock recording gives us fast, robust
integration testing
® Demo!

$./node_modules/.bin/jest app/redux/modules/bluetooth/connectToDevice.unit.test.ts
I'PASS"| app/redux/modules/bluetooth/connectToDevice.unit. {10.7865),
redux/modules/bluetooth/connectToDevice
J should connect to device and verify resulting stfite (165ms)

Test Suites: 1 passed, 1 total

Tests: 1 passed, 1 total
Snapshots: 0 total
Time: 10.983s, estimated 13s

Ran all test suites matching /app\\redux\\modules\\bluetooth\\connectToDevice.unit.test.ts/i.
Done in 12.96s.

Ny
Test automation at SOUNDBOKS

e Bluetooth Performance Speaker e End-to-end testing
e Equalizer * Appium
e Lock e Jenkins on a Macbook Pro
e Join e Samsung, Huawei, iPhone

e LOUD!

A s
SOUNDBOKS end-to-end testing

® 15 scenarios, 1-5 minutes per ®* |mprovement on manual testing
scenario

® False negatives >10% of the time
e Total feedback time: 2:30 hours

* 38 minutes on Samsung
¢ 55 minutes on iPhone

Running "mocha --spec "output/tsc/ele-test/src/scenario/settings/ble/auvto-reconnect.e2e.test.js""

auto-reconnect - samsung-sb3

should login and control speaker (29354ms)

should power speaker off (1€19ms)

should eventually show speaker as "connecting" (6137ms)
should power speaker on (2821ms)

should eventually show speaker as "connected" again (17987ms)

LA NN A

5 passing (1m)

When to use end-to-end testing vs unit testing?

® End-to-end testing e Unit testing

* Faster and cheaper than manual testing! * No physical setup

* Covers the entire system: device, phone, e Much faster feedback -
server minutes instead of hours

* Exposed to real-world timing & wireless * Much more robust -
noise ~100% trustworthy feedback

* Relentlessly uncovers hard-to-reproduce
issues

> Have a few of these > Use for most testing!

Unit testing a React Native / BLE app

e React Native
® react-native-ble-plx

o Jest

__
Manual mocks

e Simulated behavior of BLE device

* Hard coded BLE messages and traffic patterns

jest.spyOn{bleManager, 'startDeviceScan').mockImplementation{async (uuids, options, listener) {
let scanIndex = @;

const devices = [
{ name: "#212222', id: "AA:AA:AA:AAY 3,
{ name: "#212223", id: "AA:AA:AA:AB' 3},
{ name: "#212224", id: "AA:AA:AACACY 3,
1;
setInterval(({) => {
scanIndex = (scanIndex + 1) < devices.length ? scanIndex + 1 : @;
listener(null, devices[scanIndex]);
b, 1);
1)

But... manual mocks lie to us!

e To test app code in isolation...

...we manually mock device traffic

®* \When the protocol changes but the
app code is not changed...

...the app will break
e But unit tests will still pass!?!

e So...

...manual mocks lie to us!

Can we get the best of both worlds?

® Use mock recording when unit testing
® Provides true integration testing
® Gives speed and robustness of unit testing

® Not just for HTTP - also for Bluetooth BLE traffic

Mock recording for true integration testing

device computer

Aoic /' =L
A
phone - /'//
!
Vs
VZ

Y y
app recorder app test

o ©

0726 02 @

ReCO I’d trafﬁC Test Runner

® Run occasionally .

> connectToDevice

e E.g. weekly
* \When making protocol changes

® Against real device
e (Capture real traffic

® Verify expectations

> connectToDevice - complete

> complete

il O

_ 0
Test the app

® Use recording as BLE mock ® You can run tests as often as you
want
e Tests are fast and robust

* 200ms per test ® True integration testing
* 50 BLE messages

$./node_modules/.bin/jest app/redux/modules/bluetooth/connectToDevice.unit.test.ts
iteration ©

iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
WPASSY app/redux/modules/bluetooth/connectToDevice.unit.test.ts ((ERLLE)

redux/modules/bluetooth/connectToDevice
J should connect to device and verify resulting state (213ms)

WO J300 £ WNMK

"records": [

O —
. {
Sample recordlng "type": "command",

"command": "state",
"request": {},
"response”: "PoweredOn"

"type": "command",
"command": "startDeviceScan”,
"request™: {
"uuidList": [
"F5C26570-64EC-4906-B908-6A7302879A2B"
1,

"scanOptions": {
"allowDuplicates™: true

"type": "event",
"event": "deviceScan",
"args": {
"device": {
"id": "12-34-56-78-9A-BC",
"locallame™: "#999@@1",
"manufacturerData”: "WAzAAQUAAenBFBKQPSaxI1lltxA=="",
"name": "#999001",
"resi": null
¥s
"error": null

¥

Set up react-native-ble-plx mock with Jest

® mocks__/react-native-ble-plx.js

import { State } from 'react-native-ble-plx’;
import { BleManagerMock as BleManager } from 'react-native-ble-plx-mock-recorder’;

export {
State,
BleManager,

1

Write app tests using Jest

describe('Devicelist', () =» {
it('should load and show device info', async () => {

const recording = JSON.parse(fs.readFileSync("'../devicelist.recording.jscn'));
const { blePlayer } = getBleManager();
blePlayer.mockWith{recording);

load recording to simulate BLE traffic

// when: render the app
render{withStore(<DevicelistScreen />, configureStore()));

// when: simulating BLE scan response

act(() => {

blePlayer.playuntil('scanned'); // Note: causes re-render,

1);

render app

[/ when: clicking a device
fireEvent.press(screen.getByAllylLabel(' Connect to "The Speaker"'));

// then: eventually battery level is shown
expect(screen.findByAllylLabel("The Speaker" battery level')).toHaveTextContent('[l] 42%');

1);

1)

_
Recorder app

* Alightweight React Native app ® Has to be created in addition to the
app tests
e Dedicated to recording traffic for the e Jest does not run on the phone
app tests e react-native-ble-plx does not run on a
laptop

® Documents what traffic is necessary
for given scenarios

® FEvolves over time with new or
updated scenarios

npx react-native init BleAppRecorder --template react-native-ble-plx-mock-recorder-mocha-template

_ 0
Write the recorder app

describe{recordinghame, () =» {
let bleManager:;

let bleRecorder; Start recorder

let device;

before(() =» {
bleRecorder = new BleRecorder({ bleManager: new BleManager() });

bleManager = bleRecorder.bleManagersSpy;
}s

it{'should receive scan result', async () =» {
device = await new Promise((resolve, reject) =»> {
bleManager.onStateChange ((powerState) =» {
if (powerState === BleState.PoweredOn) {
bleManager.startDeviceScan(null, null, (error, d) => {

if (lerror && bleRecorder.isExpected(d)) {
resolve(d);

} else if (error) {

| redect(erron); add label

s
}
}, true};
1)
bleRecorder.label('scanned");

s

generate traffic

save recording
after(() =» {

bleRecorder.close(};
})s
)

Architecture: overview

computer

device phone

firmware

“ — app = app test
BLE

—» ble-plx

recorder test

—
recording

Architecture: running the app

device phone

- / app
BLE
—» ble-plx

firmware

Architecture: recording traffic

device

firmware

BLE

phone

ble-plx

_

recorder test

computer

—
recording

Architecture: testing the app

app

<—— app test

computer

—
recording

Architecture: overview

computer

device phone

firmware

“ — app = app test
BLE

—» ble-plx

recorder test

—
recording

Time for questions!

How to handle different developer devices?

Run recordings locally as well as on

build server const deviceMap = {
expected: {
'@0:12:6F:BA:AT:T74": {
Developers have different local name:disfoﬁizy;ié e
devices with different ids , recordid: ,

'34:81:64:68:F7:E1': {
name: 'BeoPlay Al',

Shared recordings should use recordId: '12.34-56-78-9A-BC"

canonical device id 1,
}s
. . . . record: {
So: you can specify this mapping in '12-34-56-78-9A-BC': {
the recorder app name: 'The Speaker',
15
b

H

How to handle varying values?

Devices have different
values of characteristics

E.g. RSSI, battery level,
volume

Recording should use
canonical values

So: you can specify the
recorded value and verify
the actual value in the
recorder app

it('should read battery level', async () => {
const { id } = device;
bleRecorder.queueRecordValue(basebdFromUint8(42});

const { value } = await bleManager.readCharacteristicForDevice(
id,
service.battery.uuid,
characteristic.batterylevel.uuid

);

const batterylevel = uint8FromBasebtd(value);
console.log((actual batterylLevel = ${batterylLevel}));
expect(batterylLevel).to.be.at.least(0);
expect(batterylevel).to.be.at.most(108);

1)

Can we still do manual mocking?

e Have at least one integration test per BLE “message”

e Additional tests can be unit tests with manual mocks
* parameterized tests, boundary testing, combinatorial testing

® So: you can manually mock BLE traffic in your app tests

const { blePlayer } = bleManagerMock;
blePlayer.mockWith({
records: [
{ command: 'startDeviceScan', request: { uuidList: defaultUUIDs, scanOptions: {} }, type: ‘command' },
{ event: 'deviceScan', args: { device }, autoPlay: false, type: ‘event' },
{ command: 'stopDeviceScan', request: {}, type: 'command' },
{ label: 'scanned', type: 'label'},

]
1)

How to debug recordings?

e BLE traffic (
 refers to services and “type”: "command”,
characteristics by UuliD "command" : ;r‘eadCharacteriSticForDevice",
"reguest™:
* values are base64 encoded “characteristicUUTID": "@0002a19-0000-1000-8000-00305F0b34Fh"
* not very readable! "id": "12-34-56-78-9A-BC",
"serviceUUID": "0000130f-0000-1000-8000-00305f9b34Fb"
® So: the recording file .}I;E_Spmse,._ :
iIncludes debugging "serviceUUID": "0000180f-0000-1000-8000-00805FOb34Fb",
information for your "wuid": "00002a19-0000-1000-3000-00805f0b34fb",
convenience } value™: "Kg==
"debug": {
"serviceUUID": "Battery Service",
"characteristicUUID": "Battery Level®,
"walue": "<Buffer 2a> '*'"
}

¥

Read more!

®* Blog post

* fullstackagile.eu/2021/06/24/
bluetooth-ble-mock-recorder

® Repository

e github.com/larsthorup/react-
native-ble-plx-mock-recorder

® Package

* npmjs.com/package/react-
native-ble-plx-mock-recorder

e (Contributions welcome!

Lars Thorup
fullstackagile.eu
twitter.com/larsthorup

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

