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Agenda
● A story about test automation at 

SOUNDBOKS

● How can we test an app that controls 
a Bluetooth device?

● Demo!

● End-to-end tests are slow and fragile
● Unit tests with manual mocks lie to us
● Mock recording gives us fast, robust 

integration testing



  

Test automation at SOUNDBOKS
● Bluetooth Performance Speaker

● Equalizer
● Lock
● Join
● LOUD!

● End-to-end testing
● Appium
● Jenkins on a Macbook Pro
● Samsung, Huawei, iPhone



  

SOUNDBOKS end-to-end testing
● 15 scenarios, 1-5 minutes per 

scenario

● Total feedback time: 2:30 hours
● 38 minutes on Samsung
● 55 minutes on iPhone

● Improvement on manual testing

● False negatives >10% of the time



  

When to use end-to-end testing vs unit testing?
● End-to-end testing

● Faster and cheaper than manual testing!
● Covers the entire system: device, phone, 

server
● Exposed to real-world timing & wireless 

noise
● Relentlessly uncovers hard-to-reproduce 

issues

● Unit testing
● No physical setup
● Much faster feedback - 

minutes instead of hours
● Much more robust - 

~100% trustworthy feedback

➔ Use for most testing!➔ Have a few of these



  

Unit testing a React Native / BLE app
● React Native

● react-native-ble-plx

● Jest



  

Manual mocks
● Simulated behavior of BLE device

● Hard coded BLE messages and traffic patterns



  

But... manual mocks lie to us!
● To test app code in isolation...

...we manually mock device traffic

● When the protocol changes but the 
app code is not changed...

...the app will break

● But unit tests will still pass!?!

● So...

...manual mocks lie to us!



  

Can we get the best of both worlds?
● Use mock recording when unit testing

● Provides true integration testing

● Gives speed and robustness of unit testing

● Not just for HTTP - also for Bluetooth BLE traffic



  

Mock recording for true integration testing



  

Record traffic
● Run occasionally

● E.g. weekly
● When making protocol changes

● Against real device

● Capture real traffic

● Verify expectations



  

Test the app
● Use recording as BLE mock

● Tests are fast and robust
● 200ms per test
● 50 BLE messages

● You can run tests as often as you 
want

● True integration testing



  

Sample recording



  

Set up react-native-ble-plx mock with Jest
● __mocks__/react-native-ble-plx.js



  

Write app tests using Jest

load recording to simulate BLE traffic

render app

click buttons



  

Recorder app
● A lightweight React Native app

● Dedicated to recording traffic for the 
app tests

● Documents what traffic is necessary 
for given scenarios

● Evolves over time with new or 
updated scenarios

● Has to be created in addition to the 
app tests
● Jest does not run on the phone
● react-native-ble-plx does not run on a 

laptop



  

Write the recorder app

add label

generate traffic

start recorder

save recording



  

Architecture: overview
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Architecture: running the app
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Architecture: recording traffic
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Architecture: testing the app
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Time for questions!



  

How to handle different developer devices?
● Run recordings locally as well as on 

build server

● Developers have different local 
devices with different ids

● Shared recordings should use 
canonical device id

● So: you can specify this mapping in 
the recorder app



  

How to handle varying values?
● Devices have different 

values of characteristics

● E.g. RSSI, battery level, 
volume

● Recording should use 
canonical values

● So: you can specify the 
recorded value and verify 
the actual value in the 
recorder app



  

Can we still do manual mocking?
● Have at least one integration test per BLE “message”

● Additional tests can be unit tests with manual mocks
● parameterized tests, boundary testing, combinatorial testing

● So: you can manually mock BLE traffic in your app tests



  

How to debug recordings?
● BLE traffic 

● refers to services and 
characteristics by UUID

● values are base64 encoded
● not very readable!

● So: the recording file 
includes debugging 
information for your 
convenience



  

Read more!
● Blog post

● fullstackagile.eu/2021/06/24/
bluetooth-ble-mock-recorder

● Repository
● github.com/larsthorup/react-

native-ble-plx-mock-recorder

● Package
● npmjs.com/package/react-

native-ble-plx-mock-recorder

● Contributions welcome!
Lars Thorup
fullstackagile.eu

twitter.com/larsthorup
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