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Agenda

e A story about test automation at

SOUNDBOKS
* End-to-end tests are slow and fragile
e How can we test an app that controls * Unit tests with manual mocks lie to us
a Bluetooth device? * Mock recording gives us fast, robust
integration testing
® Demo!

$ ./node_modules/.bin/jest app/redux/modules/bluetooth/connectToDevice.unit.test.ts
I'PASS"| app/redux/modules/bluetooth/connectToDevice.unit. {10.7865),
redux/modules/bluetooth/connectToDevice
J should connect to device and verify resulting stfite (165ms)

Test Suites: 1 passed, 1 total

Tests: 1 passed, 1 total
Snapshots: 0 total
Time: 10.983s, estimated 13s

Ran all test suites matching /app\\redux\\modules\\bluetooth\\connectToDevice.unit.test.ts/i.
Done in 12.96s.



Ny
Test automation at SOUNDBOKS

e Bluetooth Performance Speaker e End-to-end testing
e Equalizer * Appium
e Lock e Jenkins on a Macbook Pro
e Join e Samsung, Huawei, iPhone

e LOUD!
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SOUNDBOKS end-to-end testing

® 15 scenarios, 1-5 minutes per ®* |mprovement on manual testing
scenario

® False negatives >10% of the time
e Total feedback time: 2:30 hours

* 38 minutes on Samsung
¢ 55 minutes on iPhone

Running "mocha --spec "output/tsc/ele-test/src/scenario/settings/ble/auvto-reconnect.e2e.test.js""

auto-reconnect - samsung-sb3

should login and control speaker (29354ms)

should power speaker off (1€19ms)

should eventually show speaker as "connecting" (6137ms)
should power speaker on (2821ms)

should eventually show speaker as "connected" again (17987ms)
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5 passing (1m)



When to use end-to-end testing vs unit testing?

® End-to-end testing e Unit testing

* Faster and cheaper than manual testing! * No physical setup

* Covers the entire system: device, phone, e Much faster feedback -
server minutes instead of hours

* Exposed to real-world timing & wireless * Much more robust -
noise ~100% trustworthy feedback

* Relentlessly uncovers hard-to-reproduce
issues

> Have a few of these > Use for most testing!



Unit testing a React Native / BLE app

e React Native
® react-native-ble-plx

o Jest
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Manual mocks

e Simulated behavior of BLE device

* Hard coded BLE messages and traffic patterns

jest.spyOn{bleManager, 'startDeviceScan').mockImplementation{async (uuids, options, listener) {
let scanIndex = @;

const devices = [
{ name: "#212222', id: "AA:AA:AA:AAY 3,
{ name: "#212223", id: "AA:AA:AA:AB' 3},
{ name: "#212224", id: "AA:AA:AACACY 3,
1;
setInterval(({) => {
scanIndex = (scanIndex + 1) < devices.length ? scanIndex + 1 : @;
listener(null, devices[scanIndex]);
b, 1);
1)



But... manual mocks lie to us!

e To test app code in isolation...

...we manually mock device traffic

®* \When the protocol changes but the
app code is not changed...

...the app will break
e But unit tests will still pass!?!

e So...

...manual mocks lie to us!




Can we get the best of both worlds?

® Use mock recording when unit testing
® Provides true integration testing
® Gives speed and robustness of unit testing

® Not just for HTTP - also for Bluetooth BLE traffic



Mock recording for true integration testing

device computer
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ReCO I’d trafﬁC Test Runner

® Run occasionally .

> connectToDevice

e E.g. weekly
* \When making protocol changes

® Against real device
e (Capture real traffic

® Verify expectations

> connectToDevice - complete

> complete

il O
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Test the app

® Use recording as BLE mock ® You can run tests as often as you
want
e Tests are fast and robust

* 200ms per test ® True integration testing
* 50 BLE messages

$ ./node_modules/.bin/jest app/redux/modules/bluetooth/connectToDevice.unit.test.ts
iteration ©

iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
WPASSY app/redux/modules/bluetooth/connectToDevice.unit.test.ts ((ERLLE)

redux/modules/bluetooth/connectToDevice
J should connect to device and verify resulting state (213ms)

WO J300 £ WNMK



"records": [

O —
. {
Sample recordlng "type": "command",

"command": "state",
"request": {},
"response”: "PoweredOn"

"type": "command",
"command": "startDeviceScan”,
"request™: {
"uuidList": [
"F5C26570-64EC-4906-B908-6A7302879A2B"
1,

"scanOptions": {
"allowDuplicates™: true

"type": "event",
"event": "deviceScan",
"args": {
"device": {
"id": "12-34-56-78-9A-BC",
"locallame™: "#999@@1",
"manufacturerData”: "WAzAAQUAAenBFBKQPSaxI1lltxA=="",
"name": "#999001",
"resi": null
¥s
"error": null

¥



Set up react-native-ble-plx mock with Jest

®  mocks__/react-native-ble-plx.js

import { State } from 'react-native-ble-plx’;
import { BleManagerMock as BleManager } from 'react-native-ble-plx-mock-recorder’;

export {
State,
BleManager,

1



Write app tests using Jest

describe( 'Devicelist', () =» {
it('should load and show device info', async () => {

const recording = JSON.parse(fs.readFileSync("'../devicelist.recording.jscn'));
const { blePlayer } = getBleManager();
blePlayer.mockWith{recording);

load recording to simulate BLE traffic

// when: render the app
render{withStore(<DevicelistScreen />, configureStore()));

// when: simulating BLE scan response

act(() => {

blePlayer.playuntil('scanned'); // Note: causes re-render,

1);

render app

[/ when: clicking a device
fireEvent.press(screen.getByAllylLabel( ' Connect to "The Speaker"'));

// then: eventually battery level is shown
expect(screen.findByAllylLabel( "The Speaker" battery level')).toHaveTextContent('[l] 42%');

1);

1)
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Recorder app

* Alightweight React Native app ® Has to be created in addition to the
app tests
e Dedicated to recording traffic for the e Jest does not run on the phone
app tests e react-native-ble-plx does not run on a
laptop

® Documents what traffic is necessary
for given scenarios

® FEvolves over time with new or
updated scenarios

npx react-native init BleAppRecorder --template react-native-ble-plx-mock-recorder-mocha-template
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Write the recorder app

describe{recordinghame, () =» {
let bleManager:;

let bleRecorder; Start recorder

let device;

before(() =» {
bleRecorder = new BleRecorder({ bleManager: new BleManager() });

bleManager = bleRecorder.bleManagersSpy;
}s

it{'should receive scan result', async () =» {
device = await new Promise((resolve, reject) =»> {
bleManager.onStateChange ((powerState) =» {
if (powerState === BleState.PoweredOn) {
bleManager.startDeviceScan(null, null, (error, d) => {

if (lerror && bleRecorder.isExpected(d)) {
resolve(d);

} else if (error) {

| redect(erron); add label

s
}
}, true};
1)
bleRecorder.label('scanned");

s

generate traffic

save recording
after(() =» {

bleRecorder.close(};
})s
)



Architecture: overview

computer

device phone

firmware

“ — app = app test
BLE

—» ble-plx

recorder test

—
recording




Architecture: running the app

device phone

- / app
BLE
—» ble-plx

firmware




Architecture: recording traffic

device

firmware

BLE

phone

ble-plx

_

recorder test

computer

—
recording




Architecture: testing the app

app

<—— app test

computer

—
recording




Architecture: overview

computer

device phone

firmware

“ — app = app test
BLE

—» ble-plx

recorder test

—
recording




Time for questions!




How to handle different developer devices?

Run recordings locally as well as on

build server const deviceMap = {
expected: {
'@0:12:6F:BA:AT:T74": {
Developers have different local name:disfoﬁizy;ié e
devices with different ids , recordid: ,

'34:81:64:68:F7:E1': {
name: 'BeoPlay Al',

Shared recordings should use recordId: '12.34-56-78-9A-BC"

canonical device id 1,
}s
. . . . record: {
So: you can specify this mapping in '12-34-56-78-9A-BC': {
the recorder app name: 'The Speaker',
15
b

H



How to handle varying values?

Devices have different
values of characteristics

E.g. RSSI, battery level,
volume

Recording should use
canonical values

So: you can specify the
recorded value and verify
the actual value in the
recorder app

it('should read battery level', async () => {
const { id } = device;
bleRecorder.queueRecordValue(basebdFromUint8(42});

const { value } = await bleManager.readCharacteristicForDevice(
id,
service.battery.uuid,
characteristic.batterylevel.uuid

);

const batterylevel = uint8FromBasebtd(value);
console.log( (actual batterylLevel = ${batterylLevel}) );
expect(batterylLevel).to.be.at.least(0);
expect(batterylevel).to.be.at.most(108);

1)



Can we still do manual mocking?

e Have at least one integration test per BLE “message”

e Additional tests can be unit tests with manual mocks
* parameterized tests, boundary testing, combinatorial testing

® So: you can manually mock BLE traffic in your app tests

const { blePlayer } = bleManagerMock;
blePlayer.mockWith({
records: [
{ command: 'startDeviceScan', request: { uuidList: defaultUUIDs, scanOptions: {} }, type: ‘command' },
{ event: 'deviceScan', args: { device }, autoPlay: false, type: ‘event' },
{ command: 'stopDeviceScan', request: {}, type: 'command' },
{ label: 'scanned', type: 'label'},

]
1)



How to debug recordings?

e BLE traffic (
 refers to services and “type”: "command”,
characteristics by UuliD "command" : ;r‘eadCharacteriSticForDevice",
"reguest™:
* values are base64 encoded “characteristicUUTID": "@0002a19-0000-1000-8000-00305F0b34Fh"
* not very readable! "id": "12-34-56-78-9A-BC",
"serviceUUID": "0000130f-0000-1000-8000-00305f9b34Fb"
® So: the recording file .}I;E_Spmse,._ :
iIncludes debugging "serviceUUID": "0000180f-0000-1000-8000-00805FOb34Fb",
information for your "wuid": "00002a19-0000-1000-3000-00805f0b34fb",
convenience } value™: "Kg==
"debug": {
"serviceUUID": "Battery Service",
"characteristicUUID": "Battery Level®,
"walue": "<Buffer 2a> '*'"
}

¥



Read more!

®* Blog post

* fullstackagile.eu/2021/06/24/
bluetooth-ble-mock-recorder

® Repository

e github.com/larsthorup/react-
native-ble-plx-mock-recorder

® Package

* npmjs.com/package/react-
native-ble-plx-mock-recorder

e (Contributions welcome!

Lars Thorup
fullstackagile.eu
twitter.com/larsthorup
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